天然有機化合物討論会講演要旨集
Online ISSN : 2433-1856
会議情報
16 植物ポリケタイド合成酵素の合理的な酵素触媒機能の拡張による非天然型新規生物活性物質の創出(口頭発表の部)
森田 洋行森 貴裕山下 誠脇本 敏幸阿部 郁朗
著者情報
会議録・要旨集 フリー

p. 91-96

詳細
抄録

HsPKS1 from Huperzia serrata is a type III polyketide synthase (PKS) with remarkable substrate tolerance and catalytic potential. Here we present the synthesis of unnatural novel polyketide-alkaloid hybrid molecules by exploiting the enzyme reaction using precursor-directed and structure-based approaches. HsPKS1 produced novel pyridoisoindole (or benzopyridoisoindole) with the 6.5.6-fused (or 6.6.5.6-fused) ring system by the condensation of 2-carbamoylbenzoyl-CoA (or 3-carbamoyl-2-naphthoyl-CoA), a synthetic nitrogen-containing non-physiological starter substrate, with two molecules of malonyl-CoA. The structure-based S348G mutant not only extended the product chain length, but also altered the cyclization mechanism to produce a biologically active, ring-expanded 6.7.6-fused dibenzoazepine, by the condensation of 2-carbamoylbenzoyl-CoA with three malonyl-CoAs. Thus, the basic nitrogen atom and the structure-based mutagenesis enabled additional C-C and C-N bond formation to generate the novel polyketide-alkaloid scaffold. Benzalacetone synthase (BAS) from Rheum palmatum is a structurally simple, plant-specific type III PKS, which catalyzes the one-step decarboxylative condensation of malonyl-CoA with 4-coumaroyl-CoA. The type III PKS exhibits unusually broad substrate specificity and notable catalytic versatility. Here we report that R. palmatum BAS efficiently produces a series of unnatural, novel tetramic acid derivatives by the condensation of malonyl-CoA with aminoacyl-CoA thioesters, chemically synthesized from L- and D-amino acids. Remarkably, the novel tetramic acid dimer from D-phenylalanoyl-CoA, showed moderate antiproliferative activity against murine leukemia P388 cells.

著者関連情報
© 2011 天然有機化合物討論会電子化委員会
前の記事 次の記事
feedback
Top