鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
ランダムな気孔形状・配置・非接着粒界がコークス強度に及ぼす影響
齋藤 泰洋松尾 翔平金井 鉄也外石 安佑子内田 中山崎 義昭松下 洋介青木 秀之野村 誠治林崎 秀幸宮下 重人
著者情報
ジャーナル オープンアクセス HTML

2014 年 100 巻 2 号 p. 140-147

詳細
抄録

The coke strength is determined by coke microstructure and non-adhesion grain boundaries. The aim of this study was to investigate the effects of pore structure and non-adhesion grain boundaries on fracture behavior by RBSM (Rigid Bodies-Spring Model). In regard to pore structure, randomly-shaped pores were generated, and the pores were randomly-arranged. The randomly-shaped pores were controlled by equivalent circle diameters and pore roundness. The non-adhesion grain boundaries were randomly-located in coke matrix. First, coke with realistic pore structure was calculated. As a result, large and distorted pores affected decreasing of the coke strength. Furthermore, a coke model which was composed of coke matrix, pores, and non-adhesion grain boundaries was analyzed. The coke strength was decreased, resulting in an increase of existence of non-adhesion grain boundaries. The numerical data was corresponded to the experimental result. The coke strength was decreased when there are a little bit of non-adhesion grain boundaries. This is because that a non-adhesion grain boundary becomes an origin of the fracture if the non-adhesion grain boundary is in a stress concentration region. It was shown that non-adhesion grain boundaries were the factor of decreasing of the coke strength with low-quality coal.

著者関連情報
© 2014 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top