鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
表面処理・腐食
転動疲労における水素侵入挙動と侵入水素のトラップサイト
亀谷 美百合 真鍋 敏之松井 直樹山﨑 真吾大村 朋彦
著者情報
ジャーナル オープンアクセス HTML

2021 年 107 巻 8 号 p. 652-660

詳細
抄録

Hydrogen absorption behavior and microstructural change of carburized JIS SCr420 steels containing different amounts of retained austenite in rolling contact fatigue were investigated. The thermal desorption analysis confirmed hydrogen desorption at the second-peak between 423 and 623 K after rolling contact fatigue. The hydrogen concentration at the second-peak increased with number of cycles in the rolling contact. This increment was larger when using the steel with a higher amount of retained austenite before the fatigue test. The increment of hydrogen concentration at the second-peak was large even when the introduction of new dislocations due to the martensitic transformation of retained austenite was considered to be small. The activation energies of desorption for the second-peak hydrogen were calculated to be 50.6 kJ·mol−1 for the steel with 10.4% retained austenite and 55.8 kJ·mol−1 for the steel with 4.9% retained austenite. The activation energies of cathodically charged 0.8%C steels with 10.9% and 6.0% retained austenite, simulating carburized layer before the test, were 36.2 and 42.2 kJ·mol−1, respectively. This means that the activation energy of hydrogen desorption increased during rolling contact. The absorbed hydrogen during the rolling contact fatigue was likely trapped in more stable trapping sites related to the retained austenite which were formed under cyclic stress.

Fullsize Image
著者関連情報
© 2021 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top