Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Regular Article
In-situ Observation of Sliding Interface in Commercially Pure Titanium Sheet with a TiO2 Film
Ryotaro Miyoshi Genki Tsukamoto
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 109 Issue 9 Pages 761-769

Details
Abstract

To investigate the factor that cause the variation in friction coefficient by sliding conditions in commercially pure titanium coated titanium oxide film, in-situ observation of sliding interface during ball on block test and EBSD analysis of a sliding cross-section were performed. At the vertical load of 0.1 N, the friction coefficient stabilized at a low level of approximately 0.12. However, at 0.5 N, the friction coefficient varying widely in the range of 0.20–0.80. At 2.0 and 4.0 N, the friction coefficient stabilized at a high level, approximately 0.30 and 0.40, respectively. At the vertical load of 0.5 N, the friction coefficient was negatively correlated to the Taylor factor for the uniaxial compression of the titanium grains directly beneath the film . Thus, it can be presumed that the ploughing term of friction coefficient increased due to the enhancement of compressive strain of titanium. On the other hands, at vertical loads of 2.0 and 4.0 N, the ball is always in contact with multiple grains due to the larger contact area. As a result, it is considered that the influence of Taylor factor was equalized and the variation of friction coefficient got smaller.

Fullsize Image
Content from these authors
© 2023 The Iron and Steel Institute of Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top