The Tohoku Journal of Experimental Medicine
Online ISSN : 1349-3329
Print ISSN : 0040-8727
ISSN-L : 0040-8727
Regular Contributions
Activation of Multiple Signaling Pathways by Terminal Complement Complexes Involved in Myocellular Sodium Homeostasis
Ken OkamotoWeiyang WangDanny O. JacobsChikanori Terai
Author information
JOURNAL FREE ACCESS

2004 Volume 202 Issue 2 Pages 113-122

Details
Abstract

Soluble C5b-9 complexes (SC5b-9), hemolytically inactive end-products of complement activation have long been considered to be irrelevant. Recent investigations, however, have demonstrated that SC5b-9 induces numerous biological effects via a series of intracellular signal transduction events. We have previously demonstrated that SC5b-9 enriched sera increased intracellular Na+ in rat skeletal muscles. This study was purposed to determine if the protein kinase C (PKC) or mitogen-activated protein kinase (MAPK) signaling pathway mediates the effects of SC5b-9. Fast-twitch extensor digitorum longus (EDL) muscles isolated from infant rats were incubated at 30°C for 60 minutes with 10% zymosan-activated rat sera (ZARS) as a source of complement. Heat-inactivated rat sera (HIRS) were used as a control. The muscles were also incubated with ZARS or HIRS in the presence of specific inhibitors against PKC (GF109203X) or MAPK (PD98059 and SB202190). Intracellular Na+ and K+ contents were then measured. ZARS significantly increased intracellular Na+ and the Na+/K+ ratio in EDL muscles as compared to HIRS. GF109203X, PD98059 and SB202190 markedly attenuated increase in myocellular Na+ induced by ZARS, respectively. We concluded that SC5b-9 enriched sera alter myocellular Na+ homeostasis, at least in part, via the mechanisms linked to PKC and MAPK signal transduction pathways.

Content from these authors
© 2004 Tohoku University Medical Press
Previous article Next article
feedback
Top