The Tohoku Journal of Experimental Medicine
Online ISSN : 1349-3329
Print ISSN : 0040-8727
ISSN-L : 0040-8727
Regular Contribution
MiR-10b-5p Impairs TET2-Mediated Inhibition of PD-L1 Transcription Thus Promoting Immune Evasion and Tumor Progression in Glioblastoma
Wei DuDayu ChenKe WeiDuo YuZhiqiang GanGuozheng XuGuojie Yao
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2023 Volume 260 Issue 3 Pages 205-214

Details
Abstract

Glioblastoma (GBM) is a highly aggressive primary brain tumor that shows intratumoral heterogeneity at the cellular and molecular level. Activation of programmed death receptor 1 (PD-1) interaction with its ligand PD-L1 is a well-known mechanism requisite for immune evasion deployed by malignant tumors including GBM. Herein, we set out to dissect the mechanism explaining the regulation of PD-L1 gene expression in GBM. The clinical samples consisted of 37 GBM tissues and 18 normal brain tissues. GBM cell model was treated by microRNA (miRNA) inhibitor, DNA constructs, and siRNAs. Assays of CCK-8 and Transwell insert were employed to assess the survival, migratory and invasive ability of GBM cell model. The immunosuppressive factor production, T cell apoptosis, and T cell cytotoxicity to GBM cells were evaluated in the co-culture system. GBM exhibited more miR-10b-5p abundance than normal at both tissue and cellular level. Suppression of miR-10b-5p weakened the ability of GBM cell model to survive, migrate, and invade, decreased the release of immunosuppressive factors, reduced T cell apoptosis, and strengthened the T cell cytotoxicity to GBM cell model. MiR-10b-5p conferred a negative control of Ten-eleven translocation 2 (TET2) that was downregulated in GBM. The functions of miR-10b-5p on GBM cell aggressiveness and immune evasion were mediated by TET2. TET2 recruited histone deacetylases HDAC1 and HDAC2 into the PD-L1 promoter region thus inhibiting its transcription. The study demonstrated the importance of miR-10b-5p-mediated repression of TET2 in PD-L1-driven immune evasion and their potential for immunotherapeutic targeting in GBM.

Fullsize Image
Content from these authors
© 2023 Tohoku University Medical Press

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND 4.0). Anyone may download, reuse, copy, reprint, or distribute the article without modifications or adaptations for non-profit purposes if they cite the original authors and source properly.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top