人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
原著論文
グラフデータベースからの頻出相互関連部分グラフ集合の発見
尾崎 知伸大川 剛直
著者情報
ジャーナル フリー

2008 年 23 巻 6 号 p. 514-525

詳細
抄録
Recently, pattern mining in structured domain, such as sequences, trees and graphs, is becoming increasingly abundant and several algorithms for especially frequent pattern mining have been developed. On the other hand, the research area of correlation mining in transaction databases, that extracts the underlying dependency among objects, attracts a big attention and extensive studies have been reported. Although we can easily expect to get a more powerful tool for structured data by introducing correlation mining, the most of current research on correlation mining are designed for transaction databases and little attention is paid to mining correlations from structured data. Motivated by these backgrounds, in this paper, we bring the concept of hyperclique pattern in transaction databases into the graph mining and consider the discovery of sets of highly-correlated subgraphs in graph-structured databases. To achieve this objective, a novel algorithm named HSG is proposed. By considering the generality ordering on sets of subgraphs, HSG employs the depth-first/breadth-first search strategy with powerful pruning techniques based on both of the anti-monotone property of support value and the upper bound of h-confidence measure. Experiments with artificial and real world datasets were conducted to assess the effectiveness of the proposed algorithm. The results of experiments show that HSG succeeds in discovering sets of highly-correlated subgraphs within reasonable computation time.
著者関連情報
© 2008 JSAI (The Japanese Society for Artificial Intelligence)
前の記事 次の記事
feedback
Top