Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
LAGRANGIAN MINIMAL ISOMETRIC IMMERSIONS OF A LORENTZIAN REAL SPACE FORM INTO A LORENTZIAN COMPLEX SPACE FORM
BANG-YEN CHENLUC VRANCKEN
著者情報
ジャーナル フリー

2002 年 54 巻 1 号 p. 121-143

詳細
抄録
It is well-known that the only minimal Lagrangian submanifolds of constant sectional curvature $c$ in a Riemannian complex space form of constant holomorphic sectional curvature $4c$ are the totally geodesic ones. In this paper we investigate minimal Lagrangian Lorentzian submanifolds of constant sectional curvature $c$ in Lorentzian complex space form of constant holomorphic sectional curvature $4c$. We prove that the situation in the Lorentzian case is quite different from the Riemannian case. Several existence and classification theorems in this respect are obtained. Some explicit expression of flat minimal Lagrangian submanifolds in flat complex Lorentzian space form are also presented.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2002 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top