Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
SOME DIFFERENTIAL GEOMETRIC PROPERTIES OF CODIMENSION-ONE FOLIATIONS OF POLYNOMIAL GROWTH
GEN-ICHI OSHIKIRI
著者情報
ジャーナル フリー

2002 年 54 巻 2 号 p. 319-328

詳細
抄録
We show that a codimension-one minimal foliation with growth at most 2 of a complete Riemannian manifold with non-negative Ricci curvature is totally geodesic. We present some foliated versions of the result given by Alencar and do Carmo, and of minimal graphs by Miranda. Further, we simplify the proof of Meeks' result concerning constant mean curvature foliations of 3-dimensional Euclidean space.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2002 by THE TOHOKU UNIVERSITY
前の記事
feedback
Top