Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
HARDY SPACES ASSOCIATED TO THE SECTIONS
YONG DINGCHIN-CHENG LIN
著者情報
ジャーナル フリー

2005 年 57 巻 2 号 p. 147-170

詳細
抄録
In this paper we define the Hardy space $H^1_{\mathcal{F}}(\boldsymbol{R}^n)$ associated with a family $\mathcal{F}$ of sections and a doubling measure $\mu$, where $\mathcal{F}$ is closely related to the Monge-Ampère equation. Furthermore, we show that the dual space of $H^1_{\mathcal{F}}(\boldsymbol{R}^n)$ is just the space $BMO_{\mathcal{F}}(\boldsymbol{R}^n)$, which was first defined by Caffarelli and Gutiérrez. We also prove that the Monge-Ampère singular integral operator is bounded from $H^1_{\mathcal{F}}(\boldsymbol{R}^n)$ to $L^1(\boldsymbol{R}^n,d\mu)$.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2005 by THE TOHOKU UNIVERSITY
次の記事
feedback
Top