Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
CHARACTERIZATION OF WAVE FRONT SETS BY WAVELET TRANSFORMS
STEVAN PILIPOVICMIRJANA VULETIC
著者情報
キーワード: Wavelet transform, wave front
ジャーナル フリー

2006 年 58 巻 3 号 p. 369-391

詳細
抄録
We consider a special wavelet transform of Moritoh and give new definitions of wave front sets of tempered distributions via that wavelet transform. The major result is that these wave front sets are equal to the wave front sets in the sense of Hörmander in the cases $n=1,2,4,8$. If $n\in\boldsymbol{N}\setminus \{1,2,4,8\}$, then we combine results for dimensions $n=1,2,4,8$ and characterize wave front sets in $\xi$-directions, where $\xi$ are presented as products of non-zero points of $\boldsymbol{R}^{n_1},\dotsc,\boldsymbol{R}^{n_s}$, $n_1+\dotsb+n_s=n,n_i\in\{1,2,4,8\}$, $i=1,\dotsc,s$. In particular, the case $n=3$ is discussed through the fourth-dimensional wavelet transform.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2006 by THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top