Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
$L^2$ CURVATURE PINCHING THEOREMS AND VANISHING THEOREMS ON COMPLETE RIEMANNIAN MANIFOLDS
Yuxin DongHezi LinShihshu Walter Wei
著者情報
ジャーナル フリー

2019 年 71 巻 4 号 p. 581-607

詳細
抄録

In this paper, by using monotonicity formulas for vector bundle-valued $p$-forms satisfying the conservation law, we first obtain general $L^2$ global rigidity theorems for locally conformally flat (LCF) manifolds with constant scalar curvature, under curvature pinching conditions. Secondly, we prove vanishing results for $L^2$ and some non-$L^2$ harmonic $p$-forms on LCF manifolds, by assuming that the underlying manifolds satisfy pointwise or integral curvature conditions. Moreover, by a theorem of Li-Tam for harmonic functions, we show that the underlying manifold must have only one end. Finally, we obtain Liouville theorems for $p$-harmonic functions on LCF manifolds under pointwise Ricci curvature conditions.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2019 THE TOHOKU UNIVERSITY
前の記事 次の記事
feedback
Top