Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
INVARIANT EINSTEIN METRICS ON $\mathrm{SU}(n)$ AND COMPLEX STIEFEL MANIFOLDS
Andreas ArvanitoyeorgosYusuke SakaneMarina Statha
著者情報
ジャーナル フリー

2020 年 72 巻 2 号 p. 161-210

詳細
抄録

We study existence of invariant Einstein metrics on complex Stiefel manifolds $G/K = \mathrm{SU}(\ell+m+n)/\mathrm{SU}(n) $ and the special unitary groups $G = \mathrm{SU}(\ell+m+n)$. We decompose the Lie algebra $\frak g$ of $G$ and the tangent space $\frak p$ of $G/K$, by using the generalized flag manifolds $G/H = \mathrm{SU}(\ell+m+n)/\mathrm{S}(\mathrm{U}(\ell)\times\mathrm{U}(m)\times\mathrm{U}(n))$. We parametrize scalar products on the 2-dimensional center of the Lie algebra of $H$, and we consider $G$-invariant and left invariant metrics determined by $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(\ell)\times\mathrm{U}(m)\times\mathrm{U}(n))$-invariant scalar products on $\frak g$ and $\frak p$ respectively. Then we compute their Ricci tensor for such metrics. We prove existence of $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(1)\times\mathrm{U}(2)\times\mathrm{U}(2))$-invariant Einstein metrics on $V_3\mathbb{C}^{5}=\mathrm{SU}(5)/\mathrm{SU}(2)$, $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(2)\times\mathrm{U}(2)\times\mathrm{U}(2))$-invariant Einstein metrics on $V_4\mathbb{C}^{6}=\mathrm{SU}(6)/\mathrm{SU}(2)$, and $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(m)\times\mathrm{U}(m)\times\mathrm{U}(n))$-invariant Einstein metrics on $V_{2m}\mathbb{C}^{2m+n}=\mathrm{SU}(2m+n)/\mathrm{SU}(n)$. We also prove existence of $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(1)\times\mathrm{U}(2)\times\mathrm{U}(2))$-invariant Einstein metrics on the compact Lie group $\mathrm{SU}(5)$, which are not naturally reductive. The Lie group $\mathrm{SU}(5)$ is the special unitary group of smallest rank known for the moment, admitting non naturally reductive Einstein metrics. Finally, we show that the compact Lie group $\mathrm{SU}(4+n)$ admits two non naturally reductive $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(2)\times\mathrm{U}(2)\times\mathrm{U}(n)))$-invariant Einstein metrics for $ 2 \leq n \leq 25$, and four non naturally reductive Einstein metrics for $n\geq 26$. This extends previous results of K. Mori about non naturally reductive Einstein metrics on $\mathrm{SU}(4+n)$ $(n \geq 2)$.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2020 THE TOHOKU UNIVERSITY
次の記事
feedback
Top