Tohoku Mathematical Journal, Second Series
Online ISSN : 2186-585X
Print ISSN : 0040-8735
ISSN-L : 0040-8735
72 巻, 2 号
選択された号の論文の7件中1~7を表示しています
  • Andreas Arvanitoyeorgos, Yusuke Sakane, Marina Statha
    2020 年72 巻2 号 p. 161-210
    発行日: 2020/06/30
    公開日: 2025/10/25
    ジャーナル フリー

    We study existence of invariant Einstein metrics on complex Stiefel manifolds $G/K = \mathrm{SU}(\ell+m+n)/\mathrm{SU}(n) $ and the special unitary groups $G = \mathrm{SU}(\ell+m+n)$. We decompose the Lie algebra $\frak g$ of $G$ and the tangent space $\frak p$ of $G/K$, by using the generalized flag manifolds $G/H = \mathrm{SU}(\ell+m+n)/\mathrm{S}(\mathrm{U}(\ell)\times\mathrm{U}(m)\times\mathrm{U}(n))$. We parametrize scalar products on the 2-dimensional center of the Lie algebra of $H$, and we consider $G$-invariant and left invariant metrics determined by $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(\ell)\times\mathrm{U}(m)\times\mathrm{U}(n))$-invariant scalar products on $\frak g$ and $\frak p$ respectively. Then we compute their Ricci tensor for such metrics. We prove existence of $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(1)\times\mathrm{U}(2)\times\mathrm{U}(2))$-invariant Einstein metrics on $V_3\mathbb{C}^{5}=\mathrm{SU}(5)/\mathrm{SU}(2)$, $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(2)\times\mathrm{U}(2)\times\mathrm{U}(2))$-invariant Einstein metrics on $V_4\mathbb{C}^{6}=\mathrm{SU}(6)/\mathrm{SU}(2)$, and $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(m)\times\mathrm{U}(m)\times\mathrm{U}(n))$-invariant Einstein metrics on $V_{2m}\mathbb{C}^{2m+n}=\mathrm{SU}(2m+n)/\mathrm{SU}(n)$. We also prove existence of $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(1)\times\mathrm{U}(2)\times\mathrm{U}(2))$-invariant Einstein metrics on the compact Lie group $\mathrm{SU}(5)$, which are not naturally reductive. The Lie group $\mathrm{SU}(5)$ is the special unitary group of smallest rank known for the moment, admitting non naturally reductive Einstein metrics. Finally, we show that the compact Lie group $\mathrm{SU}(4+n)$ admits two non naturally reductive $\mathrm{Ad}(\mathrm{S}(\mathrm{U}(2)\times\mathrm{U}(2)\times\mathrm{U}(n)))$-invariant Einstein metrics for $ 2 \leq n \leq 25$, and four non naturally reductive Einstein metrics for $n\geq 26$. This extends previous results of K. Mori about non naturally reductive Einstein metrics on $\mathrm{SU}(4+n)$ $(n \geq 2)$.

  • Xiong Liu, Xiaoli Qiu, Baode Li
    2020 年72 巻2 号 p. 211-233
    発行日: 2020/06/30
    公開日: 2025/10/25
    ジャーナル フリー

    Let $A$ be an expansive dilation on $\mathbb{R}^n$, $q\in (0,\,\infty]$ and $p (\cdot): $\mathbb{R}^n\rightarrow (0,\,\infty)$ be a variable exponent function satisfying the globally log-Hölder continuous condition. Let $H^{p (\cdot),\, q}_A ({\mathbb{R}}^n)$ be the anisotropic variable Hardy-Lorentz space defined via the radial grand maximal function. In this paper, the authors first establish its molecular characterization via the atomic characterization of $H^{p (\cdot),\, q}_A ({\mathbb{R}}^n)$. Then, as applications, the authors obtain the boundedness of anisotropic Calderón-Zygmund operators from $H^{p (\cdot),\,q}_{A}(\mathbb{R}^n)$ to $L^{p (\cdot),\,q}(\mathbb{R}^n)$ or from $H^{p (\cdot),\,q}_{A}(\mathbb{R}^n)$ to itself. All these results are still new even in the classical isotropic setting.

  • Lech Maligranda, Katsuo Matsuoka
    2020 年72 巻2 号 p. 235-259
    発行日: 2020/06/30
    公開日: 2025/10/25
    ジャーナル フリー

    We prove the strong-type and weak-type estimates for the Calderón–Zygmund singular integrals on central Morrey–Orlicz and weak central Morrey–Orlicz spaces defined in our earlier paper [26]. Next part has similar investigations between distinct central Morrey–Orlicz and weak central Morrey–Orlicz spaces. Then we define the $\lambda$-central mean oscillation–Orlicz spaces and its weak version investigating also some estimates for a modified Calderón–Zygmund singular integrals. Also, we show boundedness of a modified Calderón–Zygmund singular integrals from central Morrey–Orlicz spaces to $\lambda$-central mean oscillation–Orlicz spaces, even for different Orlicz functions, and corresponding weak version.

  • Masayoshi Nagase
    2020 年72 巻2 号 p. 261-282
    発行日: 2020/06/30
    公開日: 2025/10/25
    ジャーナル フリー

    Based on the idea of adiabatic expansion theory, we will present a new formula for the asymptotic expansion coefficients of every derivative of the heat kernel on a compact Riemannian manifold. It will be very useful for having systematic understanding of the coefficients, and, furthermore, by using only a basic knowledge of calculus added to the formula, one can describe them explicitly up to an arbitrarily high order.

  • Lorenzo Brandolese, Jiao He
    2020 年72 巻2 号 p. 283-297
    発行日: 2020/06/30
    公開日: 2025/10/25
    ジャーナル フリー

    We address the uniqueness problem for mild solutions of the Boussinesq system in $\mathbb{R}^3$. We provide several uniqueness classes on the velocity and the temperature, generalizing in this way the classical $C ([0,T]; L^3(\mathbb{R}^3))$-uniqueness result for mild solutions of the Navier–Stokes equations.

  • Kaneharu Tsuchida
    2020 年72 巻2 号 p. 299-315
    発行日: 2020/06/30
    公開日: 2025/10/25
    ジャーナル フリー

    In this paper, we study a $\lambda (\mu)$-ground state of the Schrödinger operator $\mathcal{H}^{\mu}$ based on recurrent relativistic $\alpha$-stable processes. For a signed measure $\mu = \mu^+ - \mu^-$ being in a suitable Kato class, we construct the $\lambda (\mu)$-ground state which is bounded and continuous. Moreover, we prove that the $\lambda (\mu)$-ground state has the mean-value property. In particular, if $\lambda (\mu) = 1$, the mean-value property means the probabilistical harmonicity of $\mathcal{H}^{\mu}$. Finally, we show that if $\alpha > d = 1$, the relativistic $\alpha$-stable process is point recurrent.

  • Martin Kilian, Eduardo Mota, Nicholas Schmitt
    2020 年72 巻2 号 p. 317-333
    発行日: 2020/06/30
    公開日: 2025/10/25
    ジャーナル フリー

    We construct a new five parameter family of constant mean curvature trinoids with two asymptotically Delaunay ends and one irregular end.

feedback
Top