IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Smart Radio and Its Applications in Conjunction with Main Topics of SmartCom
Orbital Angular Momentum (OAM) Multiplexing: An Enabler of a New Era of Wireless Communications
Doohwan LEEHirofumi SASAKIHiroyuki FUKUMOTOKen HIRAGATadao NAKAGAWA
Author information
JOURNAL FREE ACCESS

2017 Volume E100.B Issue 7 Pages 1044-1063

Details
Abstract

This paper explores the potential of orbital angular momentum (OAM) multiplexing as a means to enable high-speed wireless transmission. OAM is a physical property of electro-magnetic waves that are characterized by a helical phase front in the propagation direction. Since the characteristic can be used to create multiple orthogonal channels, wireless transmission using OAM can enhance the wireless transmission rate. Comparisons with other wireless transmission technologies clarify that OAM multiplexing is particularly promising for point-to-point wireless transmission. We also clarify three major issues in OAM multiplexing: beam divergence, mode-dependent performance degradation, and reception (Rx) signal-to-noise-ratio (SNR) reduction. To mitigate mode-dependent performance degradation we first present a simple but practical Rx antenna design method. Exploiting the fact that there are specific location sets with phase differences of 90 or 180 degrees, the method allows each OAM mode to be received at its high SNR region. We also introduce two methods to address the Rx SNR reduction issue by exploiting the property of a Gaussian beam generated by multiple uniform circular arrays and by using a dielectric lens antenna. We confirm the feasibility of OAM multiplexing in a proof of concept experiment at 5.2 GHz. The effectiveness of the proposed Rx antenna design method is validated by computer simulations that use experimentally measured values. The two new Rx SNR enhancement methods are validated by computer simulations using wireless transmission at 60 GHz.

Content from these authors
© 2017 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top