IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Current issue
Displaying 1-4 of 4 articles from this issue
Regular Section
  • Yun WU, Xingyu PAN, Jieming YANG
    Article type: PAPER
    Subject area: Fundamental Theories for Communications
    2024 Volume E107.B Issue 7 Pages 487-494
    Published: July 01, 2024
    Released on J-STAGE: July 01, 2024
    JOURNAL RESTRICTED ACCESS

    Photovoltaic power is an important part of sustainable development. Accurate prediction of photovoltaic power can improve energy utilization and prevent resource waste. However, the volatility and uncertainty of photovoltaic power make power prediction difficult. Although Informer has achieved good prediction results in the field of time series prediction, it does not put forward a good solution for the volatility of series and the leakage of future information when stacking. Therefore, this paper proposes a photovoltaic power prediction model based on VMD-Informer-DCC. Firstly, Spearman's feature selector was used to screen the sequence features. Then, the VMD layer was added to the encoder of Informer to decompose the feature sequence to reduce the volatility of the feature sequence. Finally, the dilated causal convolutional layer was used to replace the Self-attention distilling of Informer, which expanded the receptive field of Informer information extraction and ensured the causality of time series prediction. To verify the effectiveness of the model, this paper uses the dataset of a photovoltaic power plant in Jilin Province in 2021 to conduct a large number of experiments. The results show that the VMD-Informer-DCC model has high prediction accuracy and wide applicability.

    Download PDF (1217K)
  • Laiwei JIANG, Zheng CHEN, Hongyu YANG
    Article type: PAPER
    Subject area: Network
    2024 Volume E107.B Issue 7 Pages 495-504
    Published: July 01, 2024
    Released on J-STAGE: July 01, 2024
    JOURNAL RESTRICTED ACCESS

    As a hierarchical network framework, clustering aims to divide nodes with similar mobility characteristics into the same cluster to form a more structured hierarchical network, which can effectively solve the problem of high dynamics of the network topology caused by the high-speed movement of nodes in aeronautical ad hoc networks. Based on this goal, we propose a multi-hop distributed clustering algorithm based on link duration. The algorithm is based on the idea of multi-hop clustering, which ensures the coverage and stability of clustering. In the clustering phase, the link duration is used to accurately measure the degree of stability between nodes. At the same time, we also use the link duration threshold to filter out relatively stable links and use the gravity factor to let nodes set conditions for actively creating links based on neighbor distribution. When selecting the cluster head, we select the most stable node as the cluster head node based on the defined node stability weight. The node stability weight comprehensively considers the connectivity degree of nodes and the link duration between nodes. In order to verify the effectiveness of the proposed method, we compare them with the N-hop and K-means algorithms from four indicators: average cluster head duration, average cluster member duration, number of cluster head changes, and average number of intra-cluster link changes. Experiments show that the proposed method can effectively improve the stability of the topology.

    Download PDF (8671K)
  • Kee-Hoon KIM
    Article type: PAPER
    Subject area: Wireless Communication Technologies
    2024 Volume E107.B Issue 7 Pages 505-512
    Published: July 01, 2024
    Released on J-STAGE: July 01, 2024
    JOURNAL RESTRICTED ACCESS

    Orthogonal frequency division multiplexing with index modulation (OFDM-IM) is a novel scheme where the information bits are conveyed through the subcarrier activation pattern (SAP) and the symbols on the active subcarriers. Specifically, the subcarriers are partitioned into many subblocks and the subcarriers in each subblock can have two states, active or idle. Unfortunately, OFDM-IM inherits the high peak-to-average power ratio (PAPR) problem from the classical OFDM. The OFDM-IM signal with high PAPR induces in-band distortion and out-of-band radiation when it passes through high power amplifier (HPA). Recently, there are attempts to reduce PAPR by exploiting the unique structure of OFDM-IM, which is adding dither signals in the idle subcarriers. The most recent work dealing with the dither signals is using dithers signals with various amplitude constraints according to the characteristic of the corresponding OFDM-IM subblock. This is reasonable because OFDM subblocks have distinct levels of robustness against noise. However, the amplitude constraint in the recent work is efficient for only additive white Gaussian noise (AWGN) channels and cannot be used for maximum likelihood (ML) detection. Therefore, in this paper, based on pairwise error probability (PEP) analysis, a specific constraint for the dither signals is derived over a Rayleigh fading channel.

    Download PDF (676K)
  • Yoshinori TANAKA, Takashi DATEKI
    Article type: PAPER
    Subject area: Terrestrial Wireless Communication/Broadcasting Technologies
    2024 Volume E107.B Issue 7 Pages 513-528
    Published: July 01, 2024
    Released on J-STAGE: July 01, 2024
    JOURNAL RESTRICTED ACCESS

    Efficient multiplexing of ultra-reliable and low-latency communications (URLLC) and enhanced mobile broadband (eMBB) traffic, as well as ensuring the various reliability requirements of these traffic types in 5G wireless communications, is becoming increasingly important, particularly for vertical services. Interference management techniques, such as coordinated inter-cell scheduling, can enhance reliability in dense cell deployments. However, tight inter-cell coordination necessitates frequent information exchange between cells, which limits implementation. This paper introduces a novel RAN slicing framework based on centralized frequency-domain interference control per slice and link adaptation optimized for URLLC. The proposed framework does not require tight inter-cell coordination but can fulfill the requirements of both the decoding error probability and the delay violation probability of each packet flow. These controls are based on a power-law estimation of the lower tail distribution of a measured data set with a smaller number of discrete samples. As design guidelines, we derived a theoretical minimum radio resource size of a slice to guarantee the delay violation probability requirement. Simulation results demonstrate that the proposed RAN slicing framework can achieve the reliability targets of the URLLC slice while improving the spectrum efficiency of the eMBB slice in a well-balanced manner compared to other evaluated benchmarks.

    Download PDF (9702K)
feedback
Top