IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Radio Access Technologies for 5G Mobile Communications System
Field Experiments on Downlink Distributed MIMO at 15-GHz Band for 5G Radio Access
Daisuke KURITAKiichi TATEISHIAtsushi HARADAYoshihisa KISHIYAMATakehiro NAKAMURAStefan PARKVALLErik DAHLMANJohan FURUSKOG
Author information
JOURNAL RESTRICTED ACCESS

2017 Volume E100.B Issue 8 Pages 1247-1255

Details
Abstract

This paper presents outdoor field experimental results to clarify the 4-by-4 multiple-input multiple-output (MIMO) throughput performance when applying joint transmission (JT) and distributed MIMO to the 15-GHz frequency band in the downlink of a 5G cellular radio access system. Experimental results for JT in a 100m × 70m large-cell scenario show that throughput improvement of up to 10% is achieved in most of the area and the peak data rate is improved from 2.8Gbps to 3.7Gbps. Based on analysis of the reference signal received power (RSRP) and channel correlation, we find that the RSRP is improved in lower RSRP areas, and that the channel correlation is improved in higher RSRP areas. These improvements contribute to higher throughput performance. The advantage of distributed MIMO and JT are compared in a 20m × 20m small-cell scenario. The throughput improvement of 70% and throughput exceeding 5 Gbps were achieved when applying distributed MIMO due to the improvement in the channel correlation. When applying JT, the RSRP is improved; however the channel correlation is not. As a result, there is no improvement in the throughput performance in the area. Finally, the relationship between the transmission point (TP) allocation and the direction of user equipment (UE) antenna arrangement is investigated. Two TP positions at 90 and 180deg. from each other are shown to be advantageous in terms of the throughput performance with different direction of UE antenna arrangement. Thus, we conclude that JT and distributed MIMO are promising technologies for the 5G radio access system that can compensate for the propagation loss and channel correlation in high frequency bands.

Content from these authors
© 2017 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top