IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Network Virtualization and Network Softwarization for Diverse 5G Services
Designing Distributed SDN C-Plane Considering Large-Scale Disruption and Restoration
Takahiro HIRAYAMAMasahiro JIBIKIHiroaki HARAI
Author information

2019 Volume E102.B Issue 3 Pages 452-463


Software-defined networking (SDN) technology enables us to flexibly configure switches in a network. Previously, distributed SDN control methods have been discussed to improve their scalability and robustness. Distributed placement of controllers and backing up each other enhance robustness. However, these techniques do not include an emergency measure against large-scale failures such as network separation induced by disasters. In this study, we first propose a network partitioning method to create a robust control plane (C-Plane) against large-scale failures. In our approach, networks are partitioned into multiple sub-networks based on robust topology coefficient (RTC). RTC denotes the probability that nodes in a sub-network isolate from controllers when a large-scale failure occurs. By placing a local controller onto each sub-network, 6%-10% of larger controller-switch connections will be retained after failure as compared to other approaches. Furthermore, we discuss reactive emergency reconstruction of a distributed SDN C-plane. Each node detects a disconnection to its controller. Then, C-plane will be reconstructed by isolated switches and managed by the other substitute controller. Meanwhile, our approach reconstructs C-plane when network connectivity recovers. The main and substitute controllers detect network restoration and merge their C-planes without conflict. Simulation results reveal that our proposed method recovers C-plane logical connectivity with a probability of approximately 90% when failure occurs in 100 node networks. Furthermore, we demonstrate that the convergence time of our reconstruction mechanism is proportional to the network size.

Content from these authors
© 2019 The Institute of Electronics, Information and Communication Engineers
Previous article Next article