IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Regular Section
A Reinforcement Learning Approach for Self-Optimization of Coverage and Capacity in Heterogeneous Cellular Networks
Junxuan WANGMeng YUXuewei ZHANGFan JIANG
著者情報
ジャーナル 認証あり

2021 年 E104.B 巻 10 号 p. 1318-1327

詳細
抄録

Heterogeneous networks (HetNets) are emerging as an inevitable method to tackle the capacity crunch of the cellular networks. Due to the complicated network environment and a large number of configured parameters, coverage and capacity optimization (CCO) is a challenging issue in heterogeneous cellular networks. By combining the self-optimizing algorithm for radio frequency (RF) parameters with the power control mechanism of small cells, the CCO problem of self-organizing network is addressed in this paper. First, the optimization of RF parameters is solved based on reinforcement learning (RL), where the base station is modeled as an agent that can learn effective strategies to control the tunable parameters by interacting with the surrounding environment. Second, the small cell can autonomously change the state of wireless transmission by comparing its distance from the user equipment with the virtual cell size. Simulation results show that the proposed algorithm can achieve better performance on user throughput compared to different conventional methods.

著者関連情報
© 2021 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top