IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Regular Section
Physical Cell ID Detection Probability Using NR Synchronization Signals in 28-GHz Band
Kyogo OTAMamoru SAWAHASHISatoshi NAGATA
Author information
JOURNAL RESTRICTED ACCESS

2021 Volume E104.B Issue 4 Pages 436-445

Details
Abstract

This paper presents the physical-layer cell identity (PCID) detection probability using the primary synchronization signal (PSS) and secondary synchronization signal (SSS) for the New Radio (NR) radio interface considering a large frequency offset and high Doppler frequency in multipath Rayleigh fading channels in the 28-GHz band. Simulation results show that cross-correlation based PSS detection after compensating for the frequency offset achieves higher PCID detection probability than autocorrelation based PSS detection at the average received signal-to-noise power ratio (SNR) values below approximately 0dB for the frequency stability of a user equipment (UE) oscillator of ϵ =5ppm. Meanwhile, both methods achieve almost the same PCID detection probability for average received SNR values higher than approximately 0dB. We also show that even with the large frequency offset caused by ϵ =20 ppm, the high PCID detection probability of approximately 90 (97)% and 90 (96)% is achieved for the cross-correlation or autocorrelation based PSS detection method, respectively, at the average received SNR of 0dB for the subcarrier spacing of 120 (240)kHz. We conclude that utilizing the multiplexing scheme for the PSS and SSS and their sequences is effective in achieving a high PCID detection probability considering a large frequency offset even with the frequency deviation of ϵ =20ppm in the 28-GHz band.

Content from these authors
© 2021 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top