IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Regular Section
Deep Learning-Based Massive MIMO CSI Acquisition for 5G Evolution and 6G
Xin WANGXiaolin HOULan CHENYoshihisa KISHIYAMATakahiro ASAI
Author information
JOURNAL RESTRICTED ACCESS

2022 Volume E105.B Issue 12 Pages 1559-1568

Details
Abstract

Channel state information (CSI) acquisition at the transmitter side is a major challenge in massive MIMO systems for enabling high-efficiency transmissions. To address this issue, various CSI feedback schemes have been proposed, including limited feedback schemes with codebook-based vector quantization and explicit channel matrix feedback. Owing to the limitations of feedback channel capacity, a common issue in these schemes is the efficient representation of the CSI with a limited number of bits at the receiver side, and its accurate reconstruction based on the feedback bits from the receiver at the transmitter side. Recently, inspired by successful applications in many fields, deep learning (DL) technologies for CSI acquisition have received considerable research interest from both academia and industry. Considering the practical feedback mechanism of 5th generation (5G) New radio (NR) networks, we propose two implementation schemes for artificial intelligence for CSI (AI4CSI), the DL-based receiver and end-to-end design, respectively. The proposed AI4CSI schemes were evaluated in 5G NR networks in terms of spectrum efficiency (SE), feedback overhead, and computational complexity, and compared with legacy schemes. To demonstrate whether these schemes can be used in real-life scenarios, both the modeled-based channel data and practically measured channels were used in our investigations. When DL-based CSI acquisition is applied to the receiver only, which has little air interface impact, it provides approximately 25% SE gain at a moderate feedback overhead level. It is feasible to deploy it in current 5G networks during 5G evolutions. For the end-to-end DL-based CSI enhancements, the evaluations also demonstrated their additional performance gain on SE, which is 6%-26% compared with DL-based receivers and 33%-58% compared with legacy CSI schemes. Considering its large impact on air-interface design, it will be a candidate technology for 6th generation (6G) networks, in which an air interface designed by artificial intelligence can be used.

Content from these authors
© 2022 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top