IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Joint Special Section on Opto-electronics and Communications for Future Optical Network
40-GHz Band Photodiode-Integrated Phased Array Antenna Module for Analog-Radio over Fiber toward Beyond 5G
Shinji NIMURAShota ISHIMURAKazuki TANAKAKosuke NISHIMURARyo INOHARA
Author information
JOURNAL FREE ACCESS

2023 Volume E106.B Issue 11 Pages 1050-1058

Details
Abstract

In 5th generation (5G) and Beyond 5G mobile communication systems, it is expected that numerous antennas will be densely deployed to realize ultra-broadband communication and uniform coverage. However, as the number of antennas increases, total power consumption of all antennas will also increase, which leads to a negative impact on the environment and operating costs of telecommunication operators. Thus, it is necessary to simplify an antenna structure to suppress the power consumption of each antenna. On the other hand, as a way to realize ultra-broadband communication, millimeter waves will be utilized because they can transmit signals with a broader bandwidth than lower frequencies. However, since millimeter waves have a large propagation loss, a propagation distance is shorter than that of low frequencies. Therefore, in order to extend the propagation distance, it is necessary to increase an equivalent isotropic radiated power by beamforming with phased array antenna. In this paper, a phased antenna array module in combined with analog radio over fiber (A-RoF) technology for 40-GHz millimeter wave is developed and evaluated for the first time. An 8×8 phased array antenna for 40-GHz millimeter wave with integrated photodiodes and RF chains has been developed, and end-to-end transmission experiment including 20km A-RoF transmission and 3-m over-the-air transmission from the developed phased array antenna has been conducted. The results showed that the 40-GHz RF signal after the end-to-end transmission satisfied the criteria of 3GPP signal quality requirements within ±50 degrees of main beam direction.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top