2024 Volume E107.B Issue 11 Pages 691-705
In this study, the most recent topics related to the precise global navigation satellite system (GNSS) positioning technology are discussed. Precise positioning here means that the position can be estimated with centimeter-level accuracy. Technologies supporting precise GNSS positioning include an increase in the number of positioning satellites and the availability of correction data. Smartphones are now capable of centimeter-level positioning. For correction data, real-time kinematic positioning (RTK)-GNSS, which has primarily been used in surveying, and the new precise point positioning-real-time kinematic (PPP-RTK) and PPP, are garnering attention. The Japanese Quasi-Zenith Satellite System was among the first to broadcast PPP-RTK and PPP correction data free of charge. RTKLIB has long been popular for both real-time and post-processing precise positioning. Here, I briefly present a method for improving this software. Precise positioning technology remains crucial as the use of GNSS in highly reliable applications, such as advanced driver-assistance systems, autonomous drones, and robots, is increasing. To ensure precise positioning, improving multipath mitigation techniques is essential; therefore, key factors related to these techniques are discussed. I also introduce my efforts to develop software GNSS receivers for young researchers and engineers as a basis for this purpose. This study is aimed at introducing these technologies in light of the most recent trends.