Abstract
Dynamic routing and wavelength assignment (RWA) is an attractive method for the efficient use of network resources in all-optical networks. We present a novel fixed alternate routing method referred to as Overlap-Degree Aware (ODA) routing in all-optical networks. A lot of researchers have focused on the shortest path routing and alternate shortest path routing taking into acount link and wavelength usage so as to reduce the consumption of network resources. The authors, however, believe that in order to minimize the blocking probability, it is important to consider not only the consumption of link and wavelength resources but also the existence of the other flows when a routing decision is made. The ODA routing decides routes using the knowledge of ingress-egress node pairs, and tries to prevent future path requests from being blocked unnecessarily by reserving link and wavelength resources for the future requests. Our simulation results show that our new routing algorithm outperforms Fixed-Alternate Routing (FAR) and Weighted Least Congestion Routing (WLCR) from the viewpoint of call blocking probability.