Abstract
In this paper, we analyze the stability of XCP (eXplicit Control Protocol) in a network with heterogeneous XCP flows (i.e., XCP flows with different propagation delays). Specifically, we model a network with heterogeneous XCP flows using fluid-flow approximation. We then derive the conditions that XCP control parameters should satisfy for stable XCP operation. Furthermore, through several numerical examples and simulation results, we quantitatively investigate effect of system parameters and XCP control parameters on stability of the XCP protocol. Our findings include: (1) when XCP flows are heterogeneous, XCP operates more stably than the case when XCP flows are homogeneous, (2) conversely, when variation in propagation delays of XCP flows is large, operation of XCP becomes unstable, and (3) the output link bandwidth of an XCP router is independent of stability of the XCP protocol.