IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Wireless Distributed Networks
Combined Nyquist and Compressed Sampling Method for Radio Wave Data Compression of a Heterogeneous Network System
Doohwan LEETakayuki YAMADAHiroyuki SHIBAYo YAMAGUCHIKazuhiro UEHARA
Author information
JOURNAL RESTRICTED ACCESS

2010 Volume E93.B Issue 12 Pages 3238-3247

Details
Abstract

To satisfy the requirement of a unified platform which can flexibly deal with various wireless radio systems, we proposed and implemented a heterogeneous network system composed of distributed flexible access points and a protocol-free signal processing unit. Distributed flexible access points are remote RF devices which perform the reception of multiple types of radio wave data and transfer the received data to the protocol-free signal processing unit through wired access network. The protocol-free signal processing unit performs multiple types of signal analysis by software. To realize a highly flexible and efficient radio wave data reception and transfer, we employ the recently developed compressed sensing technology. Moreover, we propose a combined Nyquist and compressed sampling method for the decoding signals to be sampled at the Nyquist rate and for the sensing signals to be sampled at the compressed rate. For this purpose, the decoding signals and the sensing signals are converted into the intermediate band frequency (IF) and mixed. In the IF band, the decoding signals are set at lower center frequencies than those of the sensing signals. The down converted signals are sampled at the rate of four times of the whole bandwidth of the decoding signals plus two times of the whole bandwidth of the sensing signals. The purpose of above setting is to simultaneously conduct Nyquist rate and compressed rate sampling in a single ADC. Then, all of odd (or even) samples are preserved and some of even (or odd) samples are randomly discarded. This method reduces the data transfer burden in dealing with the sensing signals while guaranteeing the realization of Nyquist-rate decoding performance. Simulation and experiment results validate the efficiency of the proposed method.

Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top