IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on Wireless Distributed Networks
Proportional Fair Resource Allocation in Coordinated MIMO Networks with Interference Suppression
Lei ZHONGYusheng JI
Author information
JOURNAL RESTRICTED ACCESS

2010 Volume E93.B Issue 12 Pages 3489-3496

Details
Abstract
The biggest challenge in multi-cell MIMO multiplexing systems is how to effectively suppress the other-cell interference (OCI) since the OCI severely decrease the system performance. Cooperation among cells is one of the most promising solutions to OCI problems. However, this solution suffers greatly from delay and overhead issues, which make it impractical. A coordinated MIMO system with a simplified cooperation between the base stations is a compromise between the theory and practice. We aim to devise an effective resource allocation algorithm based on a coordinated MIMO system that largely alleviates the OCI. In this paper, we propose a joint resource allocation algorithm incorporating intra-cell beamforming multiplexing and inter-cell interference suppression, which adaptively allocates the transmitting power and schedules users while achieving close to an optimal system throughput under proportional fairness consideration. We formulate this problem as a nonlinear combinational optimization problem, which is hard to solve. Then, we decouple the variables and transform it into a problem with convex sub-problems that can be solve but still need heavy computational complexity. In order to implement the algorithm in real-time scenarios, we reduce the computational complexity by assuming an equal power allocation utility to do user scheduling before the power allocation. Extensive simulation results show that the joint resource allocation algorithm can achieve a higher throughput and better fairness than the traditional method while maintains the proportional fairness. Moreover, the low-complexity algorithm obtains a better fairness and less computational complexity with only a slight loss in throughput.
Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top