Abstract
In many wireless sensor applications, skyline monitoring queries that continuously retrieve the skyline objects as well as the complete set of nodes that reported them play an important role. This paper presents SKYMON, a novel energy-efficient monitoring approach. The basic idea is to prune nodes that cannot yield a skyline result at the sink, as indicated by their (error bounded) prediction values, to suppress unnecessary sensor updates. Every node is associated with a prediction model, which is maintained at both the node and the sink. Sensors check sensed data against model-predicted values and transmit prediction errors to the sink. A data representation scheme is then developed to calculate an approximate view of each node's reading based on prediction errors and prediction values, which facilitates safe node pruning at the sink. We also develop a piecewise linear prediction model to maximize the benefit of making the predictions. Our proposed approach returns the exact results, while deceasing the number of queried nodes and transferred data. Extensive simulation results show that SKYMON substantially outperforms the existing TAG-based approach and MINMAX approach in terms of energy consumption.