IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516

This article has now been updated. Please use the final version.

Double Directional Millimeter Wave Propagation Channel Measurement and Polarimetric Cluster Properties in Outdoor Urban Pico-cell Environment
Karma WANGCHUKKento UMEKITatsuki IWATAPanawit HANPINITSAKMinseok KIMKentaro SAITOJun-ichi TAKADA
Author information
JOURNAL RESTRICTED ACCESS Advance online publication

Article ID: 2016EBP3303

Details
Abstract

To use millimeter wave bands in future cellular and outdoor wireless networks, understanding the multipath cluster characteristics such as delay and angular spread for different polarization is very important besides knowing the path loss and other large scale propagation parameters. This paper presents result from analysis of wide-band full polarimetric double directional channel measurement at the millimeter wave band in a typical urban pico-cell environment. Only limited number of multipath clusters with gains ranging from -8 dB to -26.8 dB below the free space path loss and mainly due to single reflection, double reflection and diffraction, under both line of sight (LOS) and obstructed LOS conditions are seen. The cluster gain and scattering intensity showed strong dependence on polarization. The scattering intensities for θ-θ polarization were seen to be stronger compared to ϕ-ϕ polarization and on average 6.1 dB, 5.6 dB and 4.5 dB higher for clusters due to single reflection, double reflection and scattering respectively. In each cluster, the paths are highly concentrated in the delay domain with delay spread comparable to the delay resolution of 2.5 ns irrespective of polarization. Unlike the scattering intensity, the angular spread of paths in each cluster did not show dependence on polarization. On the base station side, average angular spread in azimuth and in elevation were almost similar with ≤3.3° spread in azimuth and ≤3.2° spread in elevation for θ-θ polarization. These spreads were slightly smaller than those observed for ϕ-ϕ polarization. On the mobile station side the angular spread in azimuth was much higher compared to the base station side. On average, azimuth angular spread of ≤11.4° and elevation angular spread of ≤5° are observed for θ-θ polarization. These spreads were slightly larger than in ϕ-ϕ polarization. Knowing these characteristics will be vital for more accurate modeling of the channel, and in system and antenna design.

Content from these authors
© 2017 The Institute of Electronics, Information and Communication Engineers
feedback
Top