IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A Reinforcement Learning Method for Optical Thin-Film Design
Anqing JIANGOsamu YOSHIE
著者情報
ジャーナル フリー 早期公開

論文ID: 2021ECP5013

この記事には本公開記事があります。
詳細
抄録

Machine learning, especially deep learning, is dramatically changing the methods associated with optical thin-film inverse design. The vast majority of this research has focused on the parameter optimization (layer thickness, and structure size) of optical thin-films. A challenging problem that arises is an automated material search. In this work, we propose a new end-to-end algorithm for optical thin-film inverse design. This method combines the ability of unsupervised learning, reinforcement learning and includes a genetic algorithm to design an optical thin-film without any human intervention. Furthermore, with several concrete examples, we have shown how one can use this technique to optimize the spectra of a multi-layer solar absorber device.

著者関連情報
© 2021 The Institute of Electronics, Information and Communication Engineers
feedback
Top