IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Mathematical Systems Science and its Applications
Efficient Algorithms to Augment the Edge-Connectivity of Specified Vertices by One in a Graph
Satoshi TAOKAToshimasa WATANABE
著者情報
ジャーナル 認証あり

2019 年 E102.A 巻 2 号 p. 379-388

詳細
抄録

The k-edge-connectivity augmentation problem for a specified set of vertices (kECA-SV for short) is defined by “Given a graph G=(V, E) and a subset Γ ⊆ V, find a minimum set E' of edges such that G'=(V, EE') has at least k edge-disjoint paths between any pair of vertices in Γ.” Let σ be the edge-connectivity of Γ (that is, G has at least σ edge-disjoint paths between any pair of vertices in Γ). We propose an algorithm for (σ+1)ECA-SV which is done in O(|Γ|) maximum flow operations. Then the time complexity is O(σ2|Γ||V|+|E|) if a given graph is sparse, or O(|Γ||V||BG|log(|V|2/|BG|)+|E|) if dense, where |BG| is the number of pairs of adjacent vertices in G. Also mentioned is an O(|V||E|+|V|2 log |V|) time algorithm for a special case where σ is equal to the edge-connectivity of G and an O(|V|+|E|) time one for σ ≤ 2.

著者関連情報
© 2019 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top