IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Circuits and Systems
A Single-Inverter-Based True Random Number Generator with On-Chip Clock-Tuning-Based Entropy Calibration Circuit
Xingyu WANGRuilin ZHANGHirofumi SHINOHARA
著者情報
ジャーナル フリー

2024 年 E107.A 巻 1 号 p. 105-113

詳細
抄録

This paper introduces an inverter-based true random number generator (I-TRNG). It uses a single CMOS inverter to amplify thermal noise multiple times. An adaptive calibration mechanism based on clock tuning provides robust operation across a wide range of supply voltage 0.5∼1.1V and temperature -40∼140°C. An 8-bit Von-Neumann post-processing circuit (VN8W) is implemented for maximum raw entropy extraction. In a 130nm CMOS technology, the I-TRNG entropy source only occupies 635μm2 and consumes 0.016pJ/raw-bit at 0.6V. The I-TRNG occupies 13406μm2, including the entropy source, adaptive calibration circuit, and post-processing circuit. The minimum energy consumption of the I-TRNG is 1.38pJ/bit at 0.5V, while passing all NIST 800-22 and 800-90B tests. Moreover, an equivalent 15-year life at 0.7V, 25°C is confirmed by an accelerated NBTI aging test.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top