IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on Theory of Concurrent Systems and its Applications
Efficiently Computing Minimal-Support Nonnegative Integer Invariants of Petri Nets
Toshimasa WATANABESatoshi TAOKA
著者情報
ジャーナル 認証あり

2009 年 E92.A 巻 11 号 p. 2707-2716

詳細
抄録
Invariants of Petri nets are fundamental algebraic characteristics of Petri nets, and are used in various situations, such as checking (as necessity of) liveness, boundedness, periodicity and so on. Any given Petri net N has two kinds of invariants: a P-invariant is a |P|-dimensional vector Y with Yt·A = 0 and a T-invariant is a |T|-dimensional vector X with A · X =0 for the place-transition incidence matrix A of N. T-invariants are nonnegative integer vectors, while this is not always the case with P-invariants. This paper deals only with nonnegative integer invariants (invariants that are nonnegative vectors) and shows results common to the two invariants. For simplicity of discussion, only P-invariants are treated. The Fourier-Motzkin method is well-known for computing all minimal support integer invariants. This method, however, has a critical deficiency such that, even if a given Perti net N has any invariant, it is likely that no invariants are obtained because of an overflow in storing intermediate vectors as candidates for invariants. The subject of the paper is to give an overview and results known to us for efficiently computing minimal-support nonnegative integer invariants of a given Petri net by means of the Fourier-Motzkin method. Also included are algorithms for efficiently extracting siphon-traps of a Petri net.
著者関連情報
© 2009 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top