IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508
Special Section on VLSI Design and CAD Algorithms
Efficient Cut Enumeration Heuristics for Depth-Optimum Technology Mapping for LUT-Based FPGAs
Taiga TAKATAYusuke MATSUNAGA
著者情報
ジャーナル 認証あり

2009 年 E92.A 巻 12 号 p. 3268-3275

詳細
抄録
Recent technology mappers for LUT based FPGAs employ cut enumeration. Although many cuts are often needed to find a good network, enumerating all the cuts with large size consumes a lot of run-time. Existing algorithms employ the bottom-up merging which calculates Cartesian products of the fanins' cuts for each node. The number of cuts is much smaller than the size of the Cartesian products in most cases. Thus, the existing algorithms are inefficient. Furthermore, the number of cuts exponentially increases with the size of cuts, that makes the run-time much longer. Several algorithms to enumerate not all the cuts but partial cuts have been presented [8],[9], but they tend to disturb the quality of networks. This paper presents two algorithms to enumerate cuts; an exhaustive enumeration and a partial enumeration. Both of them are efficient because they do not employ the bottom-up merging. The partial enumeration reduces the number of enumerated cuts with a guarantee that a depth-minimum network can be constructed. The experimental results show that the exhaustive enumeration runs about 5 and 13 times faster than the existing bottom-up algorithm [12] for K=8, 9 respectively, while keeping the same results. On the other hand, the partial enumeration runs about 9 and 29 times faster than the existing algorithm for K =8, 9, respectively. The average area of networks derived by the sets of cuts enumerated by the partial enumeration is only 4% larger than that derived with using all the cuts, and the depth is the same.
著者関連情報
© 2009 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top