IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Hyperspectral Image Denoising using Tensor Decomposition under Multiple Constraints
Zhen LiBaojun ZhaoWenzheng WangBaoxian Wang
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2020EAL2099

この記事には本公開記事があります。
詳細
抄録

Hyperspectral images (HSIs) are generally susceptible to various noise, such as Gaussian and stripe noise. Recently, numerous denoising algorithms have been proposed to recover the HSIs. However, those approaches cannot use spectral information efficiently and suffer from the weakness of stripe noise removal. Here, we propose a tensor decomposition method with two different constraints to remove the mixed noise from HSIs. For a HSI cube, we first employ the tensor singular value decomposition (t-SVD) to effectively preserve the low-rank information of HSIs. Considering the continuity property of HSIs spectra, we design a simple smoothness constraint by using Tikhonov regularization for tensor decomposition to enhance the denoising performance. Moreover, we also design a new unidirectional total variation (TV) constraint to filter the stripe noise from HSIs. This strategy will achieve better performance for preserving images details than original TV models. The developed method is evaluated on both synthetic and real noisy HSIs, and shows the favorable results.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top