IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A Unified Design of Generalized Moreau Enhancement Matrix for Sparsity Aware LiGME Models
Yang CHENMasao YAMAGISHIIsao YAMADA
著者情報
ジャーナル フリー 早期公開

論文ID: 2022EAP1118

この記事には本公開記事があります。
詳細
抄録

In this paper, we propose a unified algebraic design of the generalized Moreau enhancement matrix (GME matrix) for the Linearly involved Generalized-Moreau-Enhanced (LiGME) model. The LiGME model has been established as a framework to construct linearly involved nonconvex regularizers for sparsity (or low-rank) aware estimation, where the design of GME matrix is a key to guarantee the overall convexity of the model. The proposed design is applicable to general linear operators involved in the regularizer of the LiGME model, and does not require any eigendecomposition or iterative computation. We also present an application of the LiGME model with the proposed GME matrix to a group sparsity aware least squares estimation problem. Numerical experiments demonstrate the effectiveness of the proposed GME matrix in the LiGME model.

著者関連情報
© 2023 The Institute of Electronics, Information and Communication Engineers
feedback
Top