IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Power Analysis of Floating-Point Operations for Leakage Resistance Evaluation of Neural Network Model Parameters
Hanae NOZAKIKazukuni KOBARA
著者情報
ジャーナル フリー 早期公開

論文ID: 2023CIP0012

この記事には本公開記事があります。
詳細
抄録

In the field of machine learning security, as one of the attack surfaces especially for edge devices, the application of side-channel analysis such as correlation power/electromagnetic analysis (CPA/CEMA) is expanding. Aiming to evaluate the leakage resistance of neural network (NN) model parameters, i.e. weights and biases, we conducted a feasibility study of CPA/CEMA on floating-point (FP) operations, which are the basic operations of NNs. This paper proposes approaches to recover weights and biases using CPA/CEMA on multiplication and addition operations, respectively. It is essential to take into account the characteristics of the IEEE 754 representation in order to realize the recovery with high precision and efficiency. We show that CPA/CEMA on FP operations requires different approaches than traditional CPA/CEMA on cryptographic implementations such as the AES.

著者関連情報
© 2023 The Institute of Electronics, Information and Communication Engineers
feedback
Top