IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
Online ISSN : 1745-1337
Print ISSN : 0916-8508

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A Unified Software and Hardware Platform for Machine Learning Aided Wireless Systems
Dody ICHWANA PUTRAMuhammad HARRY BINTANG PRATAMARyotaro ISSHIKIYuhei NAGAOLeonardo LANANTE JRHiroshi OCHI
著者情報
ジャーナル フリー 早期公開

論文ID: 2023SDP0006

この記事には本公開記事があります。
詳細
抄録

This paper presents a unified software and hardware wireless AI platform (USHWAP) for developing and evaluating machine learning in wireless systems. The platform integrates multi-software development such as MATLAB and Python with hardware platforms like FPGA and SDR, allowing for flexible and scalable device and edge computing application development. The USHWAP is implemented and validated using FPGAs and SDRs. Wireless signal classification, wireless LAN sensing, and rate adaptation are used as examples to showcase the platform's capabilities. The platform enables versatile development, including software simulation and real-time hardware implementation, offering flexibility and scalability for multiple applications. It is intended to be used by wireless-AI researchers to develop and evaluate intelligent algorithms in a laboratory environment.

著者関連情報
© 2023 The Institute of Electronics, Information and Communication Engineers
feedback
Top