2017 Volume E100.D Issue 2 Pages 409-412
This paper presents human-centered video feature selection via mRMR-SCMMCCA (minimum Redundancy and Maximum Relevance-Specific Correlation Maximization Multiset Canonical Correlation Analysis) algorithm for preference extraction. The proposed method derives SCMMCCA, which simultaneously maximizes two kinds of correlations, correlation between video features and users' viewing behavior features and correlation between video features and their corresponding rating scores. By monitoring the derived correlations, the selection of the optimal video features that represent users' individual preference becomes feasible.