IEICE Transactions on Information and Systems
Special Section on Data Engineering and Information Management
Interdisciplinary Collaborator Recommendation Based on Research Content Similarity
Masataka ARAKIMarie KATSURAIIkki OHMUKAIHideaki TAKEDA
Author information
JOURNALS FREE ACCESS

Volume E100.D (2017) Issue 4 Pages 785-792

Details
Download PDF (939K) Contact us
Abstract

Most existing methods on research collaborator recommendation focus on promoting collaboration within a specific discipline and exploit a network structure derived from co-authorship or co-citation information. To find collaboration opportunities outside researchers' own fields of expertise and beyond their social network, we present an interdisciplinary collaborator recommendation method based on research content similarity. In the proposed method, we calculate textual features that reflect a researcher's interests using a research grant database. To find the most relevant researchers who work in other fields, we compare constructing a pairwise similarity matrix in a feature space and exploiting existing social networks with content-based similarity. We present a case study at the Graduate University for Advanced Studies in Japan in which actual collaborations across departments are used as ground truth. The results indicate that our content-based approach can accurately predict interdisciplinary collaboration compared with the conventional collaboration network-based approaches.

Information related to the author
© 2017 The Institute of Electronics, Information and Communication Engineers
Previous article Next article

Recently visited articles
Journal news & Announcements
  • Please contact trans-d [a] ieice.org, if you want to unlock PDF security.
feedback
Top