IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Kernel CCA Based Transfer Learning for Software Defect Prediction
Ying MAShunzhi ZHUYumin CHENJingjing LI
著者情報
ジャーナル フリー

2017 年 E100.D 巻 8 号 p. 1903-1906

詳細
抄録

An transfer learning method, called Kernel Canonical Correlation Analysis plus (KCCA+), is proposed for heterogeneous Cross-company defect prediction. Combining the kernel method and transfer learning techniques, this method improves the performance of the predictor with more adaptive ability in nonlinearly separable scenarios. Experiments validate its effectiveness.

著者関連情報
© 2017 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top