IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Picture Coding and Image Media Processing
Shift-Variant Blind Deconvolution Using a Field of Kernels
Motoharu SONOGASHIRAMasaaki IIYAMAMichihiko MINOH
Author information
JOURNAL FREE ACCESS

2017 Volume E100.D Issue 9 Pages 1971-1983

Details
Abstract

Blind deconvolution (BD) is the problem of restoring sharp images from blurry images when convolution kernels are unknown. While it has a wide range of applications and has been extensively studied, traditional shift-invariant (SI) BD focuses on uniform blur caused by kernels that do not spatially vary. However, real blur caused by factors such as motion and defocus is often nonuniform and thus beyond the ability of SI BD. Although specialized methods exist for nonuniform blur, they can only handle specific blur types. Consequently, the applicability of BD for general blur remains limited. This paper proposes a shift-variant (SV) BD method that models nonuniform blur using a field of kernels that assigns a local kernel to each pixel, thereby allowing pixelwise variation. This concept is realized as a Bayesian model that involves SV convolution with the field of kernels and smoothing of the field for regularization. A variational-Bayesian inference algorithm is derived to jointly estimate a sharp latent image and a field of kernels from a blurry observed image. Owing to the flexibility of the field-of-kernels model, the proposed method can deal with a wider range of blur than previous approaches. Experiments using images with nonuniform blur demonstrate the effectiveness of the proposed SV BD method in comparison with previous SI and SV approaches.

Content from these authors
© 2017 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top