IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Gender Attribute Mining with Hand-Dorsa Vein Image Based on Unsupervised Sparse Feature Learning
Jun WANGGuoqing WANGZaiyu PAN
著者情報
ジャーナル フリー

2018 年 E101.D 巻 1 号 p. 257-260

詳細
抄録

Gender classification with hand-dorsa vein information, a new soft biometric trait, is solved with the proposed unsupervised sparse feature learning model, state-of-the-art accuracy demonstrates the effectiveness of the proposed model. Besides, we also argue that the proposed data reconstruction model is also applicable to age estimation when comprehensive database differing in age is accessible.

著者関連情報
© 2018 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top