IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Security Consideration for Deep Learning-Based Image Forensics
Wei ZHAOPengpeng YANGRongrong NIYao ZHAOHaorui WU
Author information
JOURNAL FREE ACCESS

2018 Volume E101.D Issue 12 Pages 3263-3266

Details
Abstract

Recently, image forensics community has paid attention to the research on the design of effective algorithms based on deep learning technique. And facts proved that combining the domain knowledge of image forensics and deep learning would achieve more robust and better performance than the traditional schemes. Instead of improving algorithm performance, in this paper, the safety of deep learning based methods in the field of image forensics is taken into account. To the best of our knowledge, this is the first work focusing on this topic. Specifically, we experimentally find that the method using deep learning would fail when adding the slight noise into the images (adversarial images). Furthermore, two kinds of strategies are proposed to enforce security of deep learning-based methods. Firstly, a penalty term to the loss function is added, which is the 2-norm of the gradient of the loss with respect to the input images, and then an novel training method is adopt to train the model by fusing the normal and adversarial images. Experimental results show that the proposed algorithm can achieve good performance even in the case of adversarial images and provide a security consideration for deep learning-based image forensics.

Content from these authors
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top