IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Nuclei Detection Based on Secant Normal Voting with Skipping Ranges in Stained Histopathological Images
XueTing LIMKenjiro SUGIMOTOSei-ichiro KAMATA
Author information

2018 Volume E101.D Issue 2 Pages 523-530


Seed detection or sometimes known as nuclei detection is a prerequisite step of nuclei segmentation which plays a critical role in quantitative cell analysis. The detection result is considered as accurate if each detected seed lies only in one nucleus and is close to the nucleus center. In previous works, voting methods are employed to detect nucleus center by extracting the nucleus saliency features. However, these methods still encounter the risk of false seeding, especially for the heterogeneous intensity images. To overcome the drawbacks of previous works, a novel detection method is proposed, which is called secant normal voting. Secant normal voting achieves good performance with the proposed skipping range. Skipping range avoids over-segmentation by preventing false seeding on the occlusion regions. Nucleus centers are obtained by mean-shift clustering from clouds of voting points. In the experiments, we show that our proposed method outperforms the comparison methods by achieving high detection accuracy without sacrificing the computational efficiency.

Information related to the author
© 2018 The Institute of Electronics, Information and Communication Engineers
Previous article Next article