2018 年 E101.D 巻 9 号 p. 2368-2380
Vignetting is a common type of image degradation that makes peripheral parts of an image darker than the central part. Single-image devignetting aims to remove undesirable vignetting from an image without resorting to calibration, thereby providing high-quality images required for a wide range of applications. Previous studies into single-image devignetting have focused on the estimation of vignetting functions under the assumption that degradation other than vignetting is negligible. However, noise in real-world observations remains unremoved after inversion of vignetting, and prevents stable estimation of vignetting functions, thereby resulting in low quality of restored images. In this paper, we introduce a methodology of image restoration based on variational Bayes (VB) to devignetting, aiming at high-quality devignetting in the presence of noise. Through VB inference, we jointly estimate a vignetting function and a latent image free from both vignetting and noise, using a general image prior for noise removal. Compared with state-of-the-art methods, the proposed VB approach to single-image devignetting maintains effectiveness in the presence of noise, as we demonstrate experimentally.