IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Selecting Orientation-Insensitive Features for Activity Recognition from Accelerometers
Yasser MOHAMMADKazunori MATSUMOTOKeiichiro HOASHI
著者情報
ジャーナル フリー

2019 年 E102.D 巻 1 号 p. 104-115

詳細
抄録

Activity recognition from sensors is a classification problem over time-series data. Some research in the area utilize time and frequency domain handcrafted features that differ between datasets. Another categorically different approach is to use deep learning methods for feature learning. This paper explores a middle ground in which an off-the-shelf feature extractor is used to generate a large number of candidate time-domain features followed by a feature selector that was designed to reduce the bias toward specific classification techniques. Moreover, this paper advocates the use of features that are mostly insensitive to sensor orientation and show their applicability to the activity recognition problem. The proposed approach is evaluated using six different publicly available datasets collected under various conditions using different experimental protocols and shows comparable or higher accuracy than state-of-the-art methods on most datasets but usually using an order of magnitude fewer features.

著者関連情報
© 2019 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top