2019 Volume E102.D Issue 5 Pages 1081-1084
In this paper, we consider a group testing (GT) problem. We derive a lower bound on the probability of error for successful decoding of defected binary signals. To this end, we exploit Fano's inequality theorem in the information theory. We show that the probability of error is bounded as an entropy function, a density of a pooling matrix and a sparsity of a binary signal. We evaluate that for decoding of highly sparse signals, the pooling matrix is required to be dense. Conversely, if dense signals are needed to decode, the sparse pooling matrix should be designed to achieve the small probability of error.