IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Micro-Expression Recognition by Leveraging Color Space Information
Minghao TANGYuan ZONGWenming ZHENGJisheng DAIJingang SHIPeng SONG
著者情報
ジャーナル フリー

2019 年 E102.D 巻 6 号 p. 1222-1226

詳細
抄録

Micro-expression is one type of special facial expressions and usually occurs when people try to hide their true emotions. Therefore, recognizing micro-expressions has potential values in lots of applications, e.g., lie detection. In this letter, we focus on such a meaningful topic and investigate how to make full advantage of the color information provided by the micro-expression samples to deal with the micro-expression recognition (MER) problem. To this end, we propose a novel method called color space fusion learning (CSFL) model to fuse the spatiotemporal features extracted in different color space such that the fused spatiotemporal features would be better at describing micro-expressions. To verify the effectiveness of the proposed CSFL method, extensive MER experiments on a widely-used spatiotemporal micro-expression database SMIC is conducted. The experimental results show that the CSFL can significantly improve the performance of spatiotemporal features in coping with MER tasks.

著者関連情報
© 2019 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top