2020 Volume E103.D Issue 1 Pages 59-62
To enhance cover song identification accuracy on a large-size music archive, a song-level feature summarization method is proposed by using multi-scale representation. The chroma n-grams are extracted in multiple scales to cope with both global and local tempo changes. We derive index from the extracted n-grams by clustering to reduce storage and computation for DB search. Experiments on the widely used music datasets confirmed that the proposed method achieves the state-of-the-art accuracy while reducing cost for cover song search.